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Abstract
Ohm’s law with the linear relation between resistive voltage and electric current is strictly valid
only in the limit of infinitesimally small voltages. On the other hand, at finite electric voltages
nonlinearities in the electric resistance can develop due to the energy picked up by the charge
carriers in the electric field. This can lead to important effects both in the case of
semiconductors and of superconductors, where the energy rise of the charge carriers or the
quasiparticles can become relatively large. In this paper we limit our discussion to the flux-flow
voltage in the mixed state of a type-II superconductor. At sufficiently low temperatures the
energy dependence of the quasiparticle density of states and, hence, of the quasiparticle
scattering rate can cause distinct nonlinear effects in the flux-flow resistance. The recent
advances in thin-film sample preparation provided new opportunities for observing nonlinear
effects of the latter kind.

1. Introduction

Nonlinear behavior of the electric resistance of materials can
be observed frequently. Whereas Ohm’s law with the linear
relation between resistive voltage and electric current is strictly
valid only in the limit of infinitesimally small applied electric
fields, the energy picked up by the charge carriers in the
electric field can lead to important nonlinear effects. Perhaps
the most famous examples are encountered in the case of
semiconductors, where the energy rise of the charge carriers
can lead to the occupation of another band with a larger
effective mass (Gunn effect), or where it results in impact
ionization of the doping impurities and avalanche breakdown
(current filaments). Another type of important examples is
found in the case of flux-flow resistance developed in the mixed
state of type-II superconductors. In both kinds of examples
it is the relatively low concentration of the relevant electric
charge carriers which allows the application of a relatively
large electric field and, hence, an appreciable amount of energy
to be picked up by them in the electric field without resulting in
an intolerably large electric current density and Joule heating.
On the other hand, in metals, due to their large concentration of
charge carriers, sufficiently large electric fields for promoting
nonlinear effects in the electric resistance cannot be generated
without excessive Joule heating.

In this paper we restrict our discussion only to purely
electronic phenomena without including Joule heating effects.

Furthermore, we only deal with the flux-flow resistance in the
mixed state of a type-II superconductor. In order to eliminate or
minimize Joule heating effects, efficient cooling of the samples
is necessary. This can be accomplished using the geometry
of extremely thin films having a large surface/volume ratio.
The recent advances in thin-film technology, with the film
thickness approaching the nanometer scale, provides a reliable
opportunity for such experiments. Finally, we do not deal with
flux pinning.

2. Three energy scales

A brief discussion of the electronic structure of a single vortex
and of the vortex lattice can be found in [1]. In the case
of the quasiparticles in the vortex cores we must distinguish
three important energy scales: the superconducting energy gap
�, the level spacing �2/εF of the Andreev bound states and
the energy smearing δε = h̄/τ due to the mean electronic
scattering time τ . (εF = Fermi energy; h̄ = Planck′s constant
divided by 2π ). Correspondingly, we have the following three
limits: the ‘dirty’ limit for � � δε, the moderately clean
limit for �2/εF � δε � � and the ‘superclean’ limit for
δε � �2/εF.

In the case of the dirty limit any energy dependence of
the density of states and of the scattering properties of the
quasiparticles is smeared out due to the large scattering rate.
The vortex can be described simply in terms of a cylinder
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of normal phase with its radius given by the superconducting
coherence length ξ . (So far, we assume s-wave symmetry of
the pair wavefunction.) In this case the flux-flow resistivity
ρfl is well accounted for by the normal resistivity ρn of the
volume fraction occupied by these cylinders, as expressed by
the Bardeen–Stephen model [2]:

ρfl = (B/BC2)ρn (1)

(B = magnetic flux density, BC2 = upper critical value of B).
The Bardeen–Stephen model is generally satisfied by classical
superconductors. Deviations from the Bardeen–Stephen model
may appear in highly pure superconductors in the limit of very
low temperatures, where the dirty limit is not valid any more
and the electronic quantum structure of the vortices can have
an effect.

In the case of the moderately clean limit, also referred
to as the quasiclassical limit, the energy dependence of the
electronic structure of the vortices cannot be ignored any more.
However, the discrete energy spectrum can be treated as a
quasicontinuum. Finally, the full quantum structure of the
energy spectrum must be taken into account only in the case
of the superclean limit (Bogoliubov–de Gennes equations).
References can be found in [1].

In contrast to the classical superconductors, the cuprate
(high-temperature) superconductors show predominantly d-
wave symmetry of the pair wavefunction with the energy gap
vanishing at the node lines. Furthermore, in the cuprates
the coherence length ξ is extremely small, being up to
100 times smaller than in the classical superconductors and
reaching values of only 1–2 nm. Due to this fact, the level
spacing �2/εF ∼ 1/ξ 2 of the Andreev bound states is up to
10 000 times larger than in the classical superconductors, and
electronic quantum effects may become important.

3. Nonlinear flux-flow resistance

Nonlinear effects in the flux-flow resistance of purely
electronic origin have been discussed for some time. In 1975
Larkin and Ovchinnikov have shown that the energy increase
of the quasiparticles in the vortex core due to the electric
field generated by vortex motion results in a shrinking of
the vortex core, a corresponding reduction of the damping
coefficient of vortex motion and an instability of the flux-flow
resistance [3]. This effect is expected in the high-temperature
limit (T ≈ Tc) and has been observed experimentally both in
classical and high-temperature superconductors. In the low-
temperature limit (T � Tc) Larkin and Ovchinnikov predicted
a logarithmic singularity of the voltage–current characteristic
associated with the thermal population of the bound states in
the vortex core and a current-dependent effective temperature
T ∗ of the quasiparticles [4]. A brief discussion of these effects
and further references can be found in [1] and [5].

Apparently, so far a theoretical discussion of possible
nonlinear effects in the flux-flow resistance, taking into
account the quantum structure of the energy spectrum of the
quasiparticles in the mixed state, has not been reported. The
theoretical treatments reported up to now were all restricted
to stationary vortices or to the linear regime of vortex

Figure 1. Electric resistivity ρ plotted versus the electric field F
showing two steps at the field values F1 and F2, respectively (top),
and the resulting electric current density j plotted versus the field F
(bottom).

motion. However, at sufficiently low temperatures interesting
phenomena can be expected. We quote from a paper by
Rainer et al [6]: having indicated that the physics of vortex
cores in clean superconductors (ξ � 	) is very different
from the physics of the vortex core in a dirty superconductor
(	 � ξ ), they point out ‘· · ·We expect more spectacular effects
in the dynamic properties· · ·’ leading to a situation ‘which
will produce a rich spectrum of largely unexplored dynamical
phenomena.’

We illustrate this regime by the following simple example.
We assume a situation where the resistivity ρ(F) shows abrupt
steps at the electric field values F1 and F2 (see figure 1).
At these values of the field the current density j switches
to a lower value given by the higher resistivity. If the
steps in the resistivity are smeared, the current density j
also more gradually shifts to the lower value (dotted lines).
For current-biased operation, at the onset (offset) of the
negative differential conductivity the current density switches
to the next higher (lower) stable branch of the characteristics,
showing hysteretic behavior.

A key element in this discussion is the energy shift of the
Fermi surface along the direction of the electric field F by the
amount [7]

δεk = eFvkτ. (2)

The subscript k indicates the point on the Fermi surface in k-
space. vk is the quasiparticle velocity and e the elementary
charge. We assume that the thermal energy smearing kBT is
small compared to the energy shifts δεk effected by the fields
F1 and F2 shown in figure 1.

As we see from (2), the energy shift δεk of the
quasiparticles is proportional to the scattering time τ . If the
time τ depends on the quasiparticle energy, the resistivity
becomes dependent on the electric field, resulting in a situation
such as shown in figure 1 and a nonlinearity in the resistivity.
If electron–electron scattering is dominant, as is the case in
the cuprate superconductors at very low temperatures, we have
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1/τ ∼ N2(ε), where N(ε) is the density of states providing
the available phase space for scattering. From the Drude
expression for the resistivity one finds

ρ ∼ 1

N

1

τ
∼ N2

N
∼ N. (3)

Together with (2) we see that an energy dependence N(ε)

can result in a field dependence ρ(F).
In the case of s-wave symmetry of the pair wavefunction,

the electronic quantum structure of the vortex lattice results
from the Andreev bound states of an isolated vortex and
the level spacing �2/εF. In the case of d-wave symmetry
of the pair wavefunction (as for the cuprates), the existence
of the node directions with zero energy gap has a strong
effect. However, as shown by Kopnin and Volovik [8, 9],
in this case there also exists an average minigap of the
same order �2

0/εF as in the s-wave case. Furthermore,
there is a characteristic resonant energy (�2

0h̄ωc/εF)
1/2,

where ωc is the cyclotron frequency. So in the clean
limit the density of states can be expected in general
to show an energy dependence N(ε), which can lead to
nonlinear behavior of the flux-flow resistance. A detailed
discussion of this argument for explaining the experimentally
observed instabilities in the resistivity of the electron-doped
superconductor Nd2−X CeX CuOY can be found in [10]. We
note that here the energy dependence of the density of states
in the case of the quasiparticle scattering rate plays a role
somewhat similar to the temperature dependence of the specific
heat in the case of the Schottky anomaly.

4. Resistivity of the vortex core

Having discussed the nonlinear effects in the flux-flow
resistance, next we turn to the procedure for extracting the
resistivity of the vortex core from the measured current–
voltage characteristic. This turns out to be interesting, if
one compares samples belonging to the dirty and the clean
limit, respectively. Again, the theoretical background has been
given by Larkin and Ovchinnikov [3, 11]. We illustrate this
point by means of a brief discussion of previous experiments
performed with superconducting amorphous Mo3Si films
(dirty limit) and epitaxial c-axis-oriented YBa2Cu3O7−δ films
(clean limit) [12]. In order to eliminate or minimize the
influence of flux pinning, these measurements were carried out
at high vortex velocities. For details we refer to [12].

Extending the theory of the flux-flow resistivity to the
regime of high vortex velocities, in the dirty limit Larkin and
Ovchinnikov obtained for the relation between electric current
density j and electric field F

j = 1

ρ
F

[
1

1 + (F/F∗)2
+ c

(
1 − T

TC

)1/2]
. (4)

Here c is of the order of unity, ρ is a reduced flux-flow
resistivity and F∗ is a critical electric field value. If the
second term in the bracket on the rhs would be absent, with
increasing electric field the current density would pass through
a maximum at F = F∗, reaching a regime with negative
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Figure 2. Core resistivity ρcore versus temperature for amorphous
Mo3Si. The inset shows the resistive transition. The normal-state
value is marked by the arrow. Reproduced with permission
from [12]. Copyright 1996 by IOP Publishing.

differential conductivity. Hence, at F = F∗ an electronic
instability is reached, and in the case of current bias the
sample switches into a state with higher resistivity. At the
critical electric field F∗ a distinct kink appears in the I –V
characteristic, which can be detected easily by experiment. At
the instability point F = F∗, according to (4) the current
density is

j∗ = 1

ρ
F∗

[
1

2
+ c

(
1 − T

TC

)1/2]
. (5)

The resistivity ρ is given by

ρ = ρcore

[
1 + 1

(1 − T/TC)1/2

BC2

B
f (B/BC2)

]−1

. (6)

Here ρcore denotes the core resistivity. In the dirty limit we
have ρcore = ρn. For the function f (B/BC2) in (6) Larkin
and Ovchinnikov obtained an expression which is also given in
equation (5) of [12]. Hence, if j∗ and F∗ are measured, one can
find the core resistivity using (5) and (6). Due to the fact that
the data are obtained at high vortex velocities, the results are
much less affected by flux pinning than measurements carried
out in the limit of small vortex velocities.

Results obtained from experiments performed with
superconducting amorphous Mo3Si films and taken from [12]
are shown in figure 2. The core resistivity ρcore calculated
from (5) and (6) is plotted versus temperature. The inset
indicates the resistive transition. The normal-state resistivity
is marked by the arrow. The core resistivity is seen to be
nearly temperature-independent. It is slightly smaller than the
normal-state value.

Next we turn to the case of the clean limit. In this case
Larkin and Ovchinnikov obtained the relation

ρ = ρcore

[
1 + 0.46

π

BC2

B

� (T )

kBT

]−1

. (7)
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Figure 3. Core resistivity ρcore versus temperature for epitaxial
c-axis-oriented YBa2Cu3O7−δ . The inset shows the resistive
transition. Reproduced with permission from [12]. Copyright 1996,
by IOP Publishing.

Here kB is Boltzmann’s constant. The nonlinearity of the I –V
characteristic is taken into account by the relation

j = 1

ρ
F

[
1

1 + (F/F∗)2

]
. (8)

In figure 3 we show results obtained from experiments
performed with epitaxial c-axis-oriented YBa2Cu3O7−δ films
and taken again from [12]. The core resistivity calculated
from (7) and (8) is plotted versus temperature. The inset shows
the resistive transition. For simplicity and ignoring the d-wave
symmetry of the pair wavefunction, the temperature-dependent
function �(T ) was taken from the BCS theory using �(0) =
3.5kBTc. The core resistivity is seen to decrease strongly with

decreasing temperature, near 50 K approaching values almost
two orders of magnitude smaller than the normal-state value.

Apparently, in the clean limit the physics of the core
resistivity is distinctly different from that in the dirty limit, as
emphasized in the quotation from [6] presented above. In the
dirty limit, the vortex core can be well described in terms of a
cylinder of normal phase with the radius ξ (Bardeen–Stephen
model). In the clean limit, the quasiparticle scattering rate in
the vortex core becomes strongly temperature-dependent and
the electronic quantum structure of the core is expected to be
more and more important at low temperatures.
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